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CHAPTER 1

A brief context

This project presents Reinforcement Learning as a solution to control systems with a large hysteresis. We consider
an autonomous sailing robot (IBOAT) which sails upwind. In this configuration, the wingsail is almost aligned with
the upcoming wind. It thus operates like a classical wing to push the boat forward. If the angle of attack of the wind
coming on the wingsail is too great, the flow around the wing detaches leading to a marked decrease of the boat’s
speed.

Hysteresis such as stall are hard to model. We therefore proposes an end-to-end controller which learns the stall
behavior and builds a policy that avoids it. Learning is performed on a simplified transition model representing the
stochastic environment and the dynamic of the boat.

On this page, you will find the documentation of the simplified simulator of the boat as well as the documentation of
the reinforcement learning tools. Each package contains tutorials to better understand how the code can be used
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CHAPTER 2

Requirements

The project depends on the following extensions :

1. NumPy for the data structures (http://www.numpy.org)

2. Matplotlib for the visualisation (https://matplotlib.org)

3. Keras for the convolutional neural network models (https://keras.io)
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CHAPTER 3

Contents

3.1 Package Sim

This package contains all the classes required to build a simulation for the learning. In this small paragraph, the physic
of the simulator is described so that the reader can better understand the implementation.

We need the boat to be in a configuration when it sails upwind so that the flow around the sail is attached and the
sail works as a wing. To generate the configuration we first assume that the boat as a target heading hdg_target = 0.
The boat as a certain heading hdg with respect to the north and faces an upcoming wind of heading WH. To lower the
number of parameters at stake we consider that the wind has a constant speed of 15 knts. The sail is oriented with
respect to the boat heading with an angle sail_pos = -40°. The angle of attack of the wind on the sail is therefore equal
to i = hdg + WH + sail_pos. This angle equation can be well understood thanks to the following image.
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The action taken to change the angle of attack are changes of boat heading delta_hdg. We therefore assume that
sail_pos is constant and equal to -40°. The wind heading is fixed to WH = 45°. Finally, there is a delay between the
command and the change of heading of 𝜏 = 0.5 seconds. The simulator can be represented with the following block
diagram. It contains a delay and an hysteresis block that are variables of the simulator class.

3.1.1 Simulator

Warning: Be careful, the delay is expressed has an offset of index. the delay in s is equal to delay*time_step

3.1.2 Hysteresis

3.1.3 Markov Decision Process (MDP)
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Note: The class variable simulation_duration defines the frequency of action taking. The reward is the average of the
new velocities computed after each transition.

3.1.4 Tutorial

To visualize how a simulation can be generated we provide a file MDPmain.py that creates a simulation where the
heading is first increase and then decrease.

TORAD = math.pi / 180

history_duration = 3
mdp_step = 1
time_step = 0.1
SP = -40 * TORAD
mdp = mdp.MDP(history_duration, mdp_step, time_step)

mean = 45 * TORAD
std = 0 * TORAD
wind_samples = 10
WH = np.random.uniform(mean - std, mean + std, size=10)

hdg0 = 0 * TORAD * np.ones(wind_samples)
state = mdp.initializeMDP(hdg0, WH)

SIMULATION_TIME = 100

i = np.ones(0)
vmg = np.ones(0)
wind_heading = np.ones(0)

for time in range(SIMULATION_TIME):
print('t = {0} s'.format(time))
action = 0
WH = np.random.uniform(mean - std, mean + std, size=wind_samples)
if time < SIMULATION_TIME / 4:

action = 0
elif time < SIMULATION_TIME / 2:

action = 1
elif time < 3 * SIMULATION_TIME / 4:

action = 0
else:

action = 1

nex_state, reward = mdp.transition(action, WH)
next_state = state
i = np.concatenate([i, mdp.extractSimulationData()[0, :]])
vmg = np.concatenate([vmg, mdp.extractSimulationData()[1, :]])
wind_heading = np.concatenate([wind_heading, WH])

time_vec = np.linspace(0, SIMULATION_TIME, int((SIMULATION_TIME) / time_step))
hdg = i - wind_heading - SP

This results in the following value for the velocity, angle of attack and heading.
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3.2 Package RL

3.2.1 Policy Learner

3.2.2 Tutorial

history_duration = 3 # Duration of state history [s]
mdp_step = 1 # Step between each state transition [s]
time_step = 0.1 # time step [s] <-> 10Hz frequency of data acquisition
mdp = MDP(history_duration, mdp_step, time_step)

mean = 45 * TORAD
std = 0 * TORAD
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wind_samples = 10
WH = np.random.uniform(mean - std, mean + std, size=10)

hdg0=0*np.ones(10)
mdp.initializeMDP(hdg0,WH)

hdg0_rand_vec=(-4,0,2,4,6,8,18,20,21,22,24)

action_size = 2
policy_angle = 18
agent = PolicyLearner(mdp.size, action_size, policy_angle)
#agent.load("policy_learning_i18_test_long_history")
batch_size = 120

EPISODES = 500

loss_of_episode = []
for e in range(EPISODES):

WH = np.random.uniform(mean - std, mean + std, size=10)
hdg0_rand = random.sample(hdg0_rand_vec, 1)[0]
hdg0 = hdg0_rand * TORAD * np.ones(10)
# initialize the incidence randomly
mdp.simulator.hyst.reset() #
# We reinitialize the memory of the flow
state = mdp.initializeMDP(hdg0, WH)
loss_sim_list = []
for time in range(40):

# print(time)
WH = np.random.uniform(mean - std, mean + std, size=wind_samples)
action = agent.actDeterministicallyUnderPolicy(state)
next_state, reward = mdp.transition(action, WH)
agent.remember(state, action, reward, next_state)
state = next_state
if len(agent.memory) > batch_size:

loss_sim_list.append(agent.replay(batch_size))
loss_over_simulation_time = np.sum(np.array([loss_sim_list])[0]) / len(np.

→˓array([loss_sim_list])[0])
loss_of_episode.append(loss_over_simulation_time)
print("Initial Heading : {}".format(hdg0_rand))
print("episode: {}/{}, Mean Loss = {}"

.format(e, EPISODES, loss_over_simulation_time))
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CHAPTER 4

Indices and tables

• genindex

• modindex

• search
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